Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.784
1.
Neurotherapeutics ; 21(3): e00348, 2024 Apr.
Article En | MEDLINE | ID: mdl-38579455

Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiology , Animals , Neurosciences/methods
2.
Neurotherapeutics ; 21(3): e00356, 2024 Apr.
Article En | MEDLINE | ID: mdl-38608373

Deep brain stimulation (DBS) is an established therapeutic tool for the treatment of Parkinson's disease (PD). The mechanisms of DBS for PD are likely rooted in modulation of the subthalamo-pallidal network. However, it can be difficult to electrophysiologically interrogate that network in human patients. The recent identification of large amplitude evoked potential (EP) oscillations from DBS in the subthalamic nucleus (STN) or globus pallidus internus (GPi) are providing new scientific opportunities to expand understanding of human basal ganglia network activity. In turn, the goal of this review is to provide a summary of DBS-induced EPs in the basal ganglia and attempt to explain various components of the EP waveforms from their likely network origins. Our analyses suggest that DBS-induced antidromic activation of globus pallidus externus (GPe) is a key driver of these oscillatory EPs, independent of stimulation location (i.e. STN or GPi). This suggests a potentially more important role for GPe in the mechanisms of DBS for PD than typically assumed. And from a practical perspective, DBS EPs are poised to become clinically useful electrophysiological biomarker signals for verification of DBS target engagement.


Basal Ganglia , Deep Brain Stimulation , Evoked Potentials , Parkinson Disease , Deep Brain Stimulation/methods , Humans , Basal Ganglia/physiology , Basal Ganglia/physiopathology , Evoked Potentials/physiology , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Animals , Globus Pallidus/physiology , Subthalamic Nucleus/physiology
3.
Prog Neurobiol ; 236: 102613, 2024 May.
Article En | MEDLINE | ID: mdl-38631480

While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.' Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.


Conflict, Psychological , Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Prefrontal Cortex , Subthalamic Nucleus , Theta Rhythm , Humans , Theta Rhythm/physiology , Subthalamic Nucleus/physiology , Male , Female , Middle Aged , Adult , Prefrontal Cortex/physiology , Motor Cortex/physiology , Parkinson Disease/physiopathology , Aged , Neural Pathways/physiology , Dystonia/physiopathology
4.
Neurobiol Dis ; 195: 106490, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38561111

The auditory oddball is a mainstay in research on attention, novelty, and sensory prediction. How this task engages subcortical structures like the subthalamic nucleus and substantia nigra pars reticulata is unclear. We administered an auditory OB task while recording single unit activity (35 units) and local field potentials (57 recordings) from the subthalamic nucleus and substantia nigra pars reticulata of 30 patients with Parkinson's disease undergoing deep brain stimulation surgery. We found tone modulated and oddball modulated units in both regions. Population activity differentiated oddball from standard trials from 200 ms to 1000 ms after the tone in both regions. In the substantia nigra, beta band activity in the local field potential was decreased following oddball tones. The oddball related activity we observe may underlie attention, sensory prediction, or surprise-induced motor suppression.


Acoustic Stimulation , Deep Brain Stimulation , Parkinson Disease , Pars Reticulata , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Male , Middle Aged , Female , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Aged , Pars Reticulata/physiology , Deep Brain Stimulation/methods , Acoustic Stimulation/methods , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Substantia Nigra/physiology , Adult
5.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605039

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Subthalamic Nucleus/physiology , Basal Ganglia/physiology , Neurons/physiology
7.
J Neural Transm (Vienna) ; 131(4): 359-367, 2024 04.
Article En | MEDLINE | ID: mdl-38456947

The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Evoked Potentials, Somatosensory/physiology , Subthalamic Nucleus/physiology , Thalamus/physiology , Parkinson Disease/therapy , Electrodes , Globus Pallidus , Electrodes, Implanted
8.
Scand J Pain ; 24(1)2024 Jan 01.
Article En | MEDLINE | ID: mdl-38485660

BACKGROUND AND OBJECTIVES: In Parkinson's disease (PD) patients, verbal suggestions have been shown to modulate motor and clinical outcomes in treatment with subthalamic deep brain stimulation (DBS). Furthermore, DBS may alleviate pain in PD. However, it is unknown if verbal suggestions influence DBS' effects on pain. METHODS: Twenty-four people with PD and DBS had stimulation downregulated (80-60 to 20%) and upregulated (from 20-60 to 80%) in a blinded manner on randomized test days: (1) with negative and positive suggestions of pain for down- and upregulation, respectively, and (2) with no suggestions to effect (control). Effects of DBS and verbal suggestions were assessed on ongoing and evoked pain (hypertonic saline injections) via 0-10 numerical rating scales along with motor symptoms, expectations, and blinding. RESULTS: Stimulation did not influence ongoing and evoked pain but influenced motor symptoms in the expected direction. Baseline and experimental pain measures showed no patterns in degree of pain. There was a trend toward negative suggestions increasing pain and positive suggestions decreasing pain. Results show significant differences in identical stimulation with negative vs positive suggestions (60% conditions AUC 38.75 vs 23.32, t(13) = 3.10, p < 0.001). Expectations to pain had small to moderate effects on evoked pain. Patients estimated stimulation level correctly within 10 points. CONCLUSION: Stimulation does not seem to influence ongoing and evoked pain, but verbal suggestions may influence pain levels. Patients appear to be unblinded to stimulation level which is an important consideration for future studies testing DBS in an attempted blind fashion.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Subthalamic Nucleus/physiology , Pain
9.
Acta Neurochir (Wien) ; 166(1): 124, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38457027

BACKGROUND: In advanced Parkinson's disease (PD), axial symptoms are common and can be debilitating. Although deep brain stimulation (DBS) significantly improves motor symptoms, conventional high-frequency stimulation (HFS) has limited effectiveness in improving axial symptoms. In this study, we investigated the effects on multiple axial symptoms after DBS surgery with three different frequency programming paradigms comprising HFS, low-frequency stimulation (LFS), and variable-frequency stimulation (VFS). METHODS: This study involved PD patients who had significant preoperative axial symptoms and underwent bilateral subthalamic nucleus (STN) DBS. Axial symptoms, motor symptoms, medications, and quality of life were evaluated preoperatively (baseline). One month after surgery, HFS was applied. At 6 months post-surgery, HFS assessments were performed, and HFS was switched to LFS. A further month later, we conducted LFS assessments and switched LFS to VFS. At 8 months after surgery, VFS assessments were performed. RESULTS: Of the 21 PD patients initially enrolled, 16 patients were ultimately included in this study. Regarding HFS, all axial symptoms except for the Berg Balance Scale (p < 0.0001) did not improve compared with the baseline (all p > 0.05). As for LFS and VFS, all axial symptoms improved significantly compared with both the baseline and HFS (all p < 0.05). Moreover, motor symptoms and medications were significantly better than the baseline (all p < 0.05) after using LFS and VFS. Additionally, the quality of life of the PD patients after receiving LFS and VFS was significantly better than at the baseline and with HFS (all p < 0.0001). CONCLUSION: Our findings indicate that HFS is ineffective at improving the majority of axial symptoms in advanced PD. However, both the LFS and VFS programming paradigms exhibit significant improvements in various axial symptoms.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Parkinson Disease/therapy , Quality of Life
10.
Mov Disord ; 39(3): 539-545, 2024 Mar.
Article En | MEDLINE | ID: mdl-38321526

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or ventral intermediate nucleus (VIM) are established targets for the treatment of Parkinson's disease (PD) or essential tremor (ET), respectively. However, DBS of the zona incerta (ZI) can be effective for both disorders. VIM DBS is assumed to achieve its therapeutic effect via activation of the cerebellothalamic (CBT) pathway, whereas the activation of the hyperdirect (HD) pathway likely plays a role in the mechanisms of STN DBS. Interestingly, HD pathway axons also emit collaterals to the ZI and red nucleus (RN) and the CBT pathway courses nearby to the ZI. OBJECTIVE: The aim was to examine the ability of ZI DBS to mutually activate the HD and CBT pathways in a detailed computational model of human DBS. METHODS: We extended a previous model of the human HD pathway to incorporate axon collaterals to the ZI and RN. The anatomical framework of the model system also included representations of the CBT pathway and internal capsule (IC) fibers of passage. We then performed detailed biophysical simulations to quantify DBS activation of the HD, CBT, and IC pathways with electrodes located in either the STN or ZI. RESULTS: STN DBS and ZI DBS both robustly activated the HD pathway. However, STN DBS was limited by IC activation at higher stimulus amplitudes. Alternatively, ZI DBS avoided IC activation while simultaneously activating the HD and CBT pathways. CONCLUSIONS: From both neuroanatomical and biophysical perspectives, ZI DBS represents an advantageous target for coupled activation of the HD and CBT pathways. © 2024 International Parkinson and Movement Disorder Society.


Deep Brain Stimulation , Essential Tremor , Parkinson Disease , Subthalamic Nucleus , Zona Incerta , Humans , Subthalamic Nucleus/physiology , Parkinson Disease/therapy , Essential Tremor/therapy
11.
Mov Disord ; 39(4): 684-693, 2024 Apr.
Article En | MEDLINE | ID: mdl-38380765

BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Deep Brain Stimulation , Essential Tremor , Magnetoencephalography , Subthalamic Nucleus , Humans , Male , Female , Middle Aged , Magnetoencephalography/methods , Subthalamic Nucleus/physiology , Subthalamic Nucleus/physiopathology , Aged , Deep Brain Stimulation/methods , Essential Tremor/physiopathology , Essential Tremor/therapy , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Thalamus/physiology , Thalamus/physiopathology , Brain Mapping , Cerebral Cortex/physiopathology , Ventral Thalamic Nuclei/physiology , Ventral Thalamic Nuclei/physiopathology
12.
Sleep Med ; 115: 174-176, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367359

BACKGROUND: Restless legs syndrome (RLS) has an increased estimated prevalence in patients with Parkinson's disease (PS). RLS frequently mimics symptoms intrinsic to PD, such as motor restlessness, contributing to making its diagnosis challenging in this population. We report the case of a patient with new-onset RLS following subthalamic deep-brain stimulation (DBS-STN). We assessed symptoms using suggested immobilization test (SIT) with both DBS-STN activated and switched off. CASE DESCRIPTION: A 59-year-old man with idiopathic PD developed disabling RLS following DBS-STN at age 58, with PD onset at 50 manifesting as left arm tremor. Despite improved motor symptoms during the month following surgery, the patient experienced left leg discomfort at rest, transiently alleviated by movements due to an irrepressible urge to move, and worsened at night. Symptoms had no temporal relationship with oral dopa-therapy and disappeared when DBS-STN was deactivated. A 1 h SIT assessed motor behavior with irrepressible urge to move, as well as sensory symptoms by visual analog scale. After 30 m DBS-STN was switched off followed by the appearance of tremor in the left arm while both motor and sensory symptoms of RLS disappeared in the left leg. DISCUSSION: The mechanisms of DBS-STN's impact on RLS remain controversial. We hypothesize the DBS-STN to induce in our patient a hyperdopaminergic tone. DBS-induced and DBS-ameliorated RLS represent interesting conditions to further understand the pathophysiology of RLS. Moreover, the present observation suggests that SIT can be a valuable tool to assess RLS in PD patients before and after DBS-STN in future prospective studies.


Deep Brain Stimulation , Parkinson Disease , Restless Legs Syndrome , Subthalamic Nucleus , Male , Humans , Middle Aged , Parkinson Disease/complications , Parkinson Disease/therapy , Parkinson Disease/diagnosis , Tremor/etiology , Tremor/therapy , Deep Brain Stimulation/adverse effects , Subthalamic Nucleus/physiology
13.
Eur J Neurosci ; 59(7): 1657-1680, 2024 Apr.
Article En | MEDLINE | ID: mdl-38414108

The timescales of the dynamics of a system depend on the combination of the timescales of its components and of its transmission delays between components. Here, we combine experimental stimulation data from 10 studies in macaque monkeys that reveal the timing of excitatory and inhibitory events in the basal ganglia circuit, to estimate its set of transmission delays. In doing so, we reveal possible inconsistencies in the existing data, calling for replications, and we propose two possible sets of transmission delays. We then integrate these delays in a model of the primate basal ganglia that does not rely on direct and indirect pathways' segregation and show that extrastriatal dopaminergic depletion in the external part of the globus pallidus and in the subthalamic nucleus is sufficient to generate ß-band oscillations (in the high part, 20-35 Hz, of the band). More specifically, we show that D2 and D5 dopamine receptors in these nuclei play opposing roles in the emergence of these oscillations, thereby explaining how completely deactivating D5 receptors in the subthalamic nucleus can, paradoxically, cancel oscillations.


Dopamine , Subthalamic Nucleus , Animals , Haplorhini , Basal Ganglia/physiology , Subthalamic Nucleus/physiology , Globus Pallidus/physiology
14.
J Neural Eng ; 21(1)2024 02 26.
Article En | MEDLINE | ID: mdl-38364279

Objective. This study investigated a machine-learning approach to detect the presence of evoked resonant neural activity (ERNA) recorded during deep brain stimulation (DBS) of the subthalamic nucleus (STN) in people with Parkinson's disease.Approach. Seven binary classifiers were trained to distinguish ERNA from the background neural activity using eight different time-domain signal features.Main results. Nested cross-validation revealed a strong classification performance of 99.1% accuracy, with 99.6% specificity and 98.7% sensitivity to detect ERNA. Using a semi-simulated ERNA dataset, the results show that a signal-to-noise ratio of 15 dB is required to maintain a 90% classifier sensitivity. ERNA detection is feasible with an appropriate combination of signal processing, feature extraction and classifier. Future work should consider reducing the computational complexity for use in real-time applications.Significance. The presence of ERNA can be used to indicate the location of a DBS electrode array during implantation surgery. The confidence score of the detector could be useful for assisting clinicians to adjust the position of the DBS electrode array inside/outside the STN.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Subthalamic Nucleus/physiology , Electrodes, Implanted
15.
J Neural Eng ; 21(1)2024 02 14.
Article En | MEDLINE | ID: mdl-38306713

Objective.The electrode-tissue interface provides the critical path for charge transfer in neurostimulation therapies and exhibits well-established nonlinear properties at high applied currents or voltages. These nonlinear properties may influence the efficacy and safety of applied stimulation but are typically neglected in computational models. In this study, nonlinear behavior of the electrode-tissue interface impedance was incorporated in a computational model of deep brain stimulation (DBS) to simulate the impact on neural activation and safety considerations.Approach.Nonlinear electrode-tissue interface properties were incorporated in a finite element model of DBS electrodesin vitroandin vivo,in the rat subthalamic nucleus, using an iterative approach. The transition point from linear to nonlinear behavior was determined for voltage and current-controlled stimulation. Predicted levels of neural activation during DBS were examined and the region of linear operation of the electrode was compared with the Shannon safety limit.Main results.A clear transition of the electrode-tissue interface impedance to nonlinear behavior was observed for both current and voltage-controlled stimulation. The transition occurred at lower values of activation overpotential for simulatedin vivothanin vitroconditions (91 mV and 165 mV respectively for current-controlled stimulation; 110 mV and 275 mV for voltage-controlled stimulation), corresponding to an applied current of 30µA and 45µA, or voltage of 330 mV at 1 kHz. The onset of nonlinearity occurred at lower values of the overpotential as frequency was increased. Incorporation of nonlinear properties resulted in activation of a higher proportion of neurons under voltage-controlled stimulation. Under current-controlled stimulation, the predicted transition to nonlinear behavior and Faradaic charge transfer at stimulation amplitudes of 30µA, corresponds to a charge density of 2.29µC cm-2and charge of 1.8 nC, well-below the Shannon safety limit.Significance.The results indicate that DBS electrodes may operate within the nonlinear region at clinically relevant stimulation amplitudes. This affects the extent of neural activation under voltage-controlled stimulation and the transition to Faradaic charge transfer for both voltage- and current-controlled stimulation with important implications for targeting of neural populations and the design of safe stimulation protocols.


Deep Brain Stimulation , Subthalamic Nucleus , Animals , Rats , Deep Brain Stimulation/methods , Electrodes , Subthalamic Nucleus/physiology , Neurons/physiology , Electric Impedance
16.
Curr Biol ; 34(3): 655-660.e3, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38183986

Deep brain stimulation (DBS) and dopaminergic therapy (DA) are common interventions for Parkinson's disease (PD). Both treatments typically improve patient outcomes, and both can have adverse side effects on decision making (e.g., impulsivity).1,2 Nevertheless, they are thought to act via different mechanisms within basal ganglia circuits.3 Here, we developed and formally evaluated their dissociable predictions within a single cost/benefit effort-based decision-making task. In the same patients, we manipulated DA medication status and subthalamic nucleus (STN) DBS status within and across sessions. Using a series of descriptive and computational modeling analyses of participant choices and their dynamics, we confirm a double dissociation: DA medication asymmetrically altered participants' sensitivities to benefits vs. effort costs of alternative choices (boosting the sensitivity to benefits while simultaneously lowering sensitivity to costs); whereas STN DBS lowered the decision threshold of such choices. To our knowledge, this is the first study to show, using a common modeling framework, a dissociation of DA and DBS within the same participants. As such, this work offers a comprehensive account for how different mechanisms impact decision making, and how impulsive behavior (present in DA-treated patients with PD and DBS patients) may emerge from separate physiological mechanisms.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Dopamine/therapeutic use , Subthalamic Nucleus/physiology , Neuropsychological Tests , Parkinson Disease/therapy , Decision Making/physiology
17.
J Neurosci ; 44(12)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38290848

The subthalamic nucleus (STN) receives cortical inputs via the hyperdirect and indirect pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (Macaca fuscata, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials. We first examined responses to the stimulation of the forelimb regions in the primary motor cortex and/or supplementary motor area. STN neurons with motor cortical inputs were found in the dorsal somatomotor region of the STN. All these STN neurons showed activity changes in Go trials, suggesting their involvement in execution of movements. Part of them exhibited activity changes in Cancel trials and sustained activity during delay periods, suggesting their involvement in cancelation of planed movements and preparation of movements, respectively. The STN neurons rarely showed activity changes in NoGo trials. Go- and Cancel-related activity was selective to the direction of movements, and the selectivity was higher in Cancel trials than in Go trials. Changes in Go- and Cancel-related activity occurred early enough to initiate and cancel movements, respectively. These results suggest that the dorsal somatomotor region of the STN, which receives motor cortical inputs, is involved in preparation and execution of movements and cancelation of planned movements.


Motor Cortex , Subthalamic Nucleus , Male , Female , Animals , Haplorhini , Subthalamic Nucleus/physiology , Basal Ganglia , Motor Cortex/physiology , Neurons/physiology
18.
Brain Stimul ; 17(1): 112-124, 2024.
Article En | MEDLINE | ID: mdl-38272256

BACKGROUND: DBS of the subthalamic nucleus (STN) considerably ameliorates cardinal motor symptoms in PD. Reported STN-DBS effects on secondary dysarthric (speech) and dysphonic symptoms (voice), as originating from vocal tract motor dysfunctions, are however inconsistent with rather deleterious outcomes based on post-surgical assessments. OBJECTIVE: To parametrically and intra-operatively investigate the effects of deep brain stimulation (DBS) on perceptual and acoustic speech and voice quality in Parkinson's disease (PD) patients. METHODS: We performed an assessment of instantaneous intra-operative speech and voice quality changes in PD patients (n = 38) elicited by direct STN stimulations with variations of central stimulation features (depth, laterality, and intensity), separately for each hemisphere. RESULTS: First, perceptual assessments across several raters revealed that certain speech and voice symptoms could be improved with STN-DBS, but this seems largely restricted to right STN-DBS. Second, computer-based acoustic analyses of speech and voice features revealed that both left and right STN-DBS could improve dysarthric speech symptoms, but only right STN-DBS can considerably improve dysphonic symptoms, with left STN-DBS being restricted to only affect voice intensity features. Third, several subareas according to stimulation depth and laterality could be identified in the motoric STN proper and close to the associative STN with optimal (and partly suboptimal) stimulation outcomes. Fourth, low-to-medium stimulation intensities showed the most optimal and balanced effects compared to high intensities. CONCLUSIONS: STN-DBS can considerably improve both speech and voice quality based on a carefully arranged stimulation regimen along central stimulation features.


Deep Brain Stimulation , Dysphonia , Parkinson Disease , Subthalamic Nucleus , Humans , Speech , Voice Quality/physiology , Parkinson Disease/complications , Parkinson Disease/therapy , Subthalamic Nucleus/physiology
20.
Neuromodulation ; 27(3): 509-519, 2024 Apr.
Article En | MEDLINE | ID: mdl-36797194

BACKGROUND: Deep brain stimulation (DBS) programming is time intensive. Recent advances in sensing technology of local field potentials (LFPs) may enable improvements. Few studies have compared the use of this technology with standard of care. OBJECTIVE/HYPOTHESIS: Sensing technology of subthalamic nucleus (STN) DBS leads in Parkinson's disease (PD) is reliable and predicts the optimal contacts and settings as predicted by clinical assessment. MATERIALS AND METHODS: Five subjects with PD (n = 9 hemispheres) with bilateral STN DBS and sensing capable battery replacement were recruited. An LFP sensing review of all bipolar contact pairs was performed three times. Contact with the maximal beta peak power (MBP) was then clinically assessed in a double-blinded fashion, and five conditions were tested: 1) entry settings, 2) off stimulation, 3) MBP at 30 µs, 4) MBP at 60 µs, and 5) MBP at 90 µs. RESULTS: Contact and frequency of the MBP power in all hemispheres did not differ across sessions. The entry settings matched with the contact with the MBP power in 5 of 9 hemispheres. No clinical difference was evident in the stimulation conditions. The clinician and subject preferred settings determined by MBP power in 7 of 9 and 5 of 7 hemispheres, respectively. CONCLUSIONS: This study indicates that STN LFPs in PD recorded directly from contacts of the DBS lead provide consistent recordings across the frequency range and a reliably detected beta peak. Furthermore, programming based on the MBP power provides at least clinical equivalence to standard of care programming with STN DBS.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Pilot Projects , Subthalamic Nucleus/physiology
...